Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 11(9)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37766130

RESUMO

Current COVID-19 vaccines can effectively reduce disease severity and hospitalisation; however, they are not considerably effective in preventing infection and transmission. In this context, mucosal vaccines are pertinent to prevent SARS-CoV-2 infection and spread. In this study, we generated a replication-competent recombinant chimeric influenza A virus (IAV) expressing the receptor-binding domain (RBD) of a SARS-CoV-2 prototype in the C-terminus of the neuraminidase (NA) of A/Puerto Rico/08/1934 H1N1 (PR8). The remaining seven segments from A/WSN/1933 H1N1 (WSN) were named PR8NARBD/WSN. We observed that the recombinant virus with the WSN backbone demonstrated improved expression of NA and RBD. A single intranasal dose of PR8NARBD/WSN(103PFU) in mice generated robust mucosal immunity, neutralising antibodies, cellular immunity, and tissue-resident memory T cells specific to SARS-CoV-2 and IAV. Importantly, immunisation with PR8NARBD/WSN viruses effectively protected mice against lethal challenges with H1N1, H3N2 IAV, and SARS-CoV-2 Beta variant and significantly reduced lung viral loads. Overall, our research demonstrates the promising potential of PR8NARBD/WSN as an attractive vaccine against emerging SARS-CoV-2 variants and influenza A virus infections.

2.
J Hazard Mater ; 401: 123362, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-32629343

RESUMO

This study examined the role of intermittent illumination/dark conditions coupled with MnO2-ammendments to regulate the mobility of As and Fe in flooded arsenic-enriched soils. Addition of MnO2 particles with intermittent illumination led to a pronounced increase in the reductive-dissolution of Fe(III) and As(V) from flooded soils compared to a corresponding dark treatments. A higher MnO2 dosage (0.10 vs 0.02 g) demonstrated a greater effect. Over a 49-day incubation, maximum Fe concentrations mobilized from the flooded soils amended with 0.10 and 0.02 g MnO2 particles were 2.39 and 1.85-fold higher than for non-amended soils under dark conditions. The corresponding maximum amounts of mobilized As were at least 92 % and 65 % higher than for non-amended soils under dark conditions, respectively. Scavenging of excited holes by soil humic/fulvic compounds increased mineral photoelectron production and boosted Fe(III)/As(V) reduction in MnO2-amended, illuminated soils. Additionally, MnO2 amendments shifted soil microbial community structure by enriching metal-reducing bacteria (e.g., Anaeromyxobacter, Bacillus and Geobacter) and increasing c-type cytochrome production. This microbial diversity response to MnO2 amendment facilitated direct contact extracellular electron transfer processes, which further enhanced Fe/As reduction. Subsequently, the mobility of released Fe(II) and As(III) was partially attenuated by adsorption, oxidation, complexation and/or coprecipitation on active sites generated on MnO2 surfaces during MnO2 dissolution. These results illustrated the impact of a semiconducting MnO2 mineral in regulating the biogeochemical cycles of As/Fe in soil and demonstrated the potential for MnO2-based bioremediation strategies for arsenic-polluted soils.


Assuntos
Arsênio , Oryza , Poluentes do Solo , Arsênio/análise , Ferro , Compostos de Manganês , Oxirredução , Óxidos , Solo , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...